add elliptic curves, diffie hellman and 'messaging'

This commit is contained in:
theBreadCompany 2024-12-05 18:15:26 +01:00
parent 7960658ef9
commit 11f22a44be
4 changed files with 148 additions and 29 deletions

109
src/keygen.rs Normal file
View file

@ -0,0 +1,109 @@
use core::str;
use crate::utils::*;
struct EllipticCurve {
a: i128,
b: i128,
r#mod: i128,
}
impl EllipticCurve {
pub fn new(a: i128, b: i128, r#mod: i128) -> Self {
EllipticCurve {
a: a,
b: b,
r#mod: r#mod,
}
}
pub fn y(&self, x: i128) -> i128 {
(x.pow(3) + self.b * x + self.a) % self.r#mod
}
pub fn random(&self) -> (i128, i128) {
let mut start = rand::random::<i128>() % self.r#mod;
let i_count = rand::random::<i8>();
for _ in 0..i_count {
start = self.y(start);
}
(start, self.y(start))
}
}
pub struct Person {
pub name: String,
private_key: Option<u32>,
pub public_key: Option<u32>,
pub shared_key: Option<u32>,
}
impl Person {
pub fn new(name: &str) -> Self {
Person {
name: name.to_string(),
private_key: None,
public_key: None,
shared_key: None,
}
}
pub fn gen_keys(&mut self, start: u32, r#mod: u32) {
let private = rand::random::<u32>();
self.private_key = Some(private.into());
let public = mod_pow(start, private.into(), r#mod);
self.public_key = Some(public);
eprintln!(
"{}: private: {} -> public: {}",
self.name,
self.private_key.unwrap(),
self.public_key.unwrap()
);
}
pub fn gen_shared(&mut self, public: u32, r#mod: u32) {
self.shared_key = Some(mod_pow(public, self.private_key.unwrap(), r#mod))
}
pub fn diffie_hellman(p1: &mut Self, p2: &mut Self) {
let r = rand::random::<u32>();
let mut m: u32 = 4;
while m < r || !is_prime(m) {
m = rand::random::<u32>();
}
p1.gen_keys(r.into(), m.into());
p2.gen_keys(r.into(), m.into());
p1.gen_shared(p2.public_key.unwrap(), m.into());
p2.gen_shared(p1.public_key.unwrap(), m.into());
assert_eq!(p1.shared_key, p2.shared_key);
}
fn xor_cipher(msg: &[u8], key: u32) -> Vec<u8> {
let key_bytes = key.to_le_bytes();
let key_len = key_bytes.len();
msg.iter()
.enumerate()
.map(|(i, &byte)| byte ^ key_bytes[i % key_len])
.collect()
}
pub fn send(&self, msg_raw: &[u8], target: &Self) {
let encrypted_raw = Self::xor_cipher(msg_raw, self.shared_key.unwrap());
let encrypted = str::from_utf8(&encrypted_raw).unwrap_or("not displayable");
let msg = str::from_utf8(&msg_raw).unwrap_or("not displayable");
eprintln!(
"[{}] Sending message '{}' ({}) to {}",
self.name, msg, encrypted, target.name
);
target.recv(&encrypted_raw, self);
}
fn recv(&self, msg_raw: &[u8], source: &Self) {
let decrypted_raw = Self::xor_cipher(msg_raw, self.shared_key.unwrap());
let decrypted = str::from_utf8(&decrypted_raw).unwrap_or("not displayable");
let msg = str::from_utf8(&msg_raw).unwrap_or("not displayable");
eprintln!(
"[{}] Received message '{}' ({}) from {}",
self.name, decrypted, msg, source.name
);
}
}

View file

@ -1,6 +1,15 @@
use keygen::Person;
mod keygen;
mod pollard_rho;
mod utils;
fn main() {
let mut alice = Person::new("alice");
let mut bob = Person::new("bob");
Person::diffie_hellman(&mut alice, &mut bob);
alice.send(b"Hello World", &bob);
/*
let mut n = 0;
while n % 2 == 0 {
n = rand::random::<u16>();
@ -10,4 +19,5 @@ fn main() {
"Generated random number {}, got prime divisor {}",
n, n_primediv
);
*/
}

View file

@ -1,3 +1,4 @@
use crate::utils::{is_prime, mod_pow};
use gcd::Gcd;
/**
@ -40,32 +41,3 @@ pub fn pollard_rho(n: u32) -> u32 {
div
}
/**
* Discrete/Modular exponentiation
*
* Highly memory efficient because the full result is never stored, but shortened by defined modulo instead.
* We can use that because the prime divisor required for our algorithm is guarenteed to be smaller
* than n.
*
* Counterpart function to the discrete logarithm.
*/
fn mod_pow(base: u32, exp: u32, r#mod: u32) -> u32 {
let mut result = 1;
for _ in 0..exp - 1 {
result = (result * base) % r#mod;
}
result
}
/**
* very primitive prime checker
*/
fn is_prime(n: u32) -> bool {
for i in (3..=(n as f32).sqrt() as u32).step_by(2) {
if n % i == 0 {
return false;
}
}
true
}

28
src/utils.rs Normal file
View file

@ -0,0 +1,28 @@
/**
* Discrete/Modular exponentiation
*
* Highly memory efficient because the full result is never stored, but shortened by defined modulo instead.
* We can use that because the prime divisor required for our algorithm is guarenteed to be smaller
* than n.
*
* Counterpart function to the discrete logarithm.
*/
pub fn mod_pow(base: u32, exp: u32, r#mod: u32) -> u32 {
let mut result: u64 = 1;
for _ in 0..exp - 1 {
result = (result * u64::from(base)) % u64::from(r#mod);
}
u32::try_from(result).unwrap()
}
/**
* very primitive prime checker
*/
pub fn is_prime(n: u32) -> bool {
for i in (3..=(n as f32).sqrt() as u32).step_by(2) {
if n % i == 0 {
return false;
}
}
true
}